Table S9: Outline of bioinformatic analysis procedures

Analysis Steps	Corresponding Script / Software	Options, parameters		
Mapping and Preprocessing				
1. Trim adapters. For multiplexed reads, 16 bp were further trimmed from both 5'- and 3'- ends of R1 and R2 reads to remove random primer index sequence and C/T tail introduced by Adaptase.	Cutadapt (27) (http://cutadapt.r eadthedocs.io/e n/stable/index.ht ml)	paired-end mode: -f fastq -q 20 -m 62 -a AGATCGGAAGAGCACACGTCTGAAC -A AGATCGGAAGAGCGTCGTGTAGGGA Multiplexed reads: -f fastq -u 16 -u -16 -m 30		
Map data to reference genome (mm10/hg19). R1 and R2 reads were mapped separately as single-end reads.	Bismark v0.15.0 (28) (https://www.bio informatics.babr aham.ac.uk/proj ects/bismark/)	Both reads:bowtie2 R1 only:pbat		
3. Remove duplicate reads.	Picard 1.141 (https://broadins titute.github.io/pi card/)	MarkDuplicates with the option REMOVE_DUPLICATES=true		
4. Remove low quality (MAPQ<30) reads (Samtools, 29)				
5. Remove highly methylated read (mCH > 70%) to protect against reads that failed bisulfite conversion	single_cell_filter.pl			
Generate cytosines summary tables (allc tables)	Methylpy (5, 7, 23)	call_methylated_sites		
Quality Control				
Remove cells with high non-conversion rate estimated using mCCC (>1% in mouse and >2% in human)	See Tables S1 and S2			
2. Exclude cells with low number of				

nonclonal mapped reads (<400K in mouse and <500K in human)				
Remove cells with coverage at >15% of genomic cytosines to protect again samples potentially with multiple cells				
Exclude cells with <99% of SNPs in cell reads matched genotype of human subject and thus may be contaminated				
Data Processing				
Compute mCH level in non-overlapping 100 KB bins.	bin_allc_files.py			
2. Keep bins with high coverage (>100 base calls) in ≥99.5% of samples.	preproc_and_TSNE.py Help: python3 preproc_and_TSNE.pyhelp			
3. Impute mCH in cells with low coverage (<100 base calls) using the mean across all cells for that bin.				
4. Compute %mCH for each bin: methylated_base_calls / total_base_calls.				
5. Normalize each bin in a cell by dividing by the global mCH in that cell.				
Cluster Cells using BackSPIN Algorithm				
DO {				
Select the top 2000 bins with greatest variance across cells.	backSPIN.py Help: python3 backSPIN.pyhelp			
Order the cells in 1D based on similarity using the SPIN algorithm.				
Split cluster into two clusters at the optimal cut-point (where the				

average correlation within the two new clusters was highest).		
4. Retain split if at least one of new subclusters has >15% increase in the average correlation value over the average of all cells in the original cluster; otherwise, terminate.		
} (for each new cluster, repeat if cluster size >50 cells)		
5. Merge clusters with <7 marker genes between them.	See methods	
Call CG DMRs		
Call mCG differentially methylated regions (FDR < 0.01).	Methylpy	DMRfind
Data Visualization		
Retain top 50 principal components from PCA and run TSNE to reduce cells to 2D space.	preproc_and_TSNE.py Help: python3 preproc_and_TSNE.pyhelp	
Load DNA methylation tracks into AnnoJ browser (http://brainome.ucsd.edu/single neurons)	http://brainome.ucsd.edu/howto_annoj.html http://www.annoj.org	